另一方面,AD=AB-BD=c-a^2/c=b^2/c(因为c^2=a^2+b^2),
在△ACD与△CBD中,
DC/AD=(ab/c) / (b^2/c)=a/b,
BC/AC=a/b,
BD/CD=(a^2/c) / (ab/c)=a/b,
∴△ACD∽△CBD(三边对应成比例) 。
∴∠BDC=∠CDA 。
而∠BDC+∠CDA=180°,故∠BDC=∠CDA=90° 。
由于∠ACB=∠CDB,所以∠ACB90° 。(证毕)
要进行实际应用,那样就事半功倍
证法4
做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
证法5
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.
分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直线上,
证法6
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 =.
同理可证,矩形MLEB的面积 =.
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
∴ 即a的平方+b的平方=c的平方
证法7
已知在△ABC中,a2+b2=c2,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x2+y2=c2,
又∵a2+b2=c2,
∴a2+b2=x2+y2(A)
但a>y,b>x,∴a2+b2>x2+y2(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a2+b2=c2=x2+(a+y)2=x2+y2+2ay+a2
∵x2+y2=b2,
得a2+b2=a2+b2+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角在△ABC中,a2+b2=c2,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x2+y2=c2,
又∵a2+b2=c2,
∴a2+b2=x2+y2(A)
但a>y,b>x,∴a2+b2>x2+y2(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a2+b2=c2=x2+(a+y)2=x2+y2+2ay+a2
∵x2+y2=b2,
得a2+b2=a2+b2+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角
其他证明
这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的 。路明思(Elisha Scott Loomis)的 Pythagorean Proposition(《毕达哥拉斯命题》)一书中总共提到367种证明方式 。有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证) 。
推荐阅读
- Windows xp系统增加虚拟内存加快运行速度的两种方法
- 农村封闭式化粪池的污水怎么处理 化粪池多久清理一次
- 淋巴结一般多久自愈 淋巴发炎一般多久能好
- 怎么制作相册,给女朋友制作相册配什么音乐
- 重赏之下必有勇夫下句是什么,重赏之下,必有勇夫是什么意思
- 电信福利卡是什么卡
- 11-12月份普陀山旅游景点推荐
- 战国时期礼崩乐坏的原因
- 刘备为何不归还荆州