【圆的切点弦方程一般推导】过圆x2+y2=r2外一点P(x0,y0)作切线PA,PB,A(x1,y1),B(x2,y2)是切点,则过AB的直线xx0+yy0=r2,称切点弦方程 。
证明:x2+y2=r2在点A , B的切线方程是xx1+yy1=r2,xx2+yy2=r2
∵点P在两切线上
∴x0x1+y0y1=r2 , x0x2+y0y2=r2
此二式表明点A , B的坐标适合直线方程xx0+yy0=r2 , 而过点A,B的直线是唯一的
∴切点弦方程是xx0+yy0=r2
说明:
切点弦方程与圆x2+y2=r2上一点T(x0,y0)的切线方程相同 。
过圆(x-a)2+(y-b)2=r2外一点P(x0 , y0)作切线PA,PB , 切点弦方程是(x-a)(x-x0)+(y-b)(y-y0)=r2 。