什么是合成生物学,其基本原理,未来发展要素是什么?( 二 )


马迎飞非常看好合成生物学未来的发展,“我们常说21世纪是生物学的世纪,细分来说,其中合成生物学将会起到重要的推动及引领作用 。”
“格物”到“造物”,这是奥秘所在
合成生物学何以如此神奇呢?从“格物”到“造物”,这是合成生物学的奥秘所在 。
“传统的生命科学,它是自上而下的,我们叫格物致知 。”刘陈立打了个比方,生命体的秘密藏在盒子里面,把盒子打开,一层一层打开的过程就是发现的过程,这是生命科学在做的事 。“而合成生物是反过来的,是自下而上重建的,等于这个生命的秘密是人们自己放进去的,然后再把这个包裹一层一层裹起来,变成一个生命体,然后去看它能不能运转 。”
用工程的办法来做研究,是合成生物学的一大特性 。
“合成生物有工程属性,它是用工程学方法去改造生命体;但它又有科学属性,因为没人干过,工程改造完之后,我并不知道它能不能造出来,有科学的未知性 。所以合成生物学也叫工程生物学 。”刘陈立介绍,设计、构建、测试和学习是工程学研究的“套路”,“我们把这个‘套路’用在合成生物学上,就是希望能够用工程的方法创造更多可能” 。
而这离不开信息技术的助力 。
“真理往往是很简单的,可能就一句话,但如果要从万千数据里归纳出一句话,这需要很强大的学习能力,信息技术就可以大展身手了 。”马迎飞表示,现在生命科学已经积累了相当多的数据,通过信息技术可以方便我们更快地对海量数据进行归纳总结,挖掘出最重要的生物学信息 。
“在前期,我们设计了很多基因的组合,把这些组合输入计算机,它会输出一些功能信息——这种组合到底能不能产青蒿素,这个基因到底表不表达……计算机给你建立了一种算法,有了这个算法,我们就知道怎样组装是正确的 。”刘陈立向采访人员介绍 。
在信息技术的助力下,实现设计和生产流程的智能化、自动化,能大大促进合成生物研发效率的提升 。“以前用酵母生产青蒿素,一个菌株需要十年十亿美元,如今只需要一年半到两年,并且研发费用可以降低90%左右 。”中国科学院深圳先进技术研究院合成生物学研究所研究员司同告诉采访人员 。
除了工程学和计算机信息科学外,合成生物学的发展,离不开生命科学、物理学、化学、数学、材料科学等多学科的融通汇聚 。
“活体胶水”是中国科学院深圳先进技术研究院合成生物学研究所研究员钟超团队在材料合成生物学领域的一项研究成果 。他表示,经过基因改造后的细菌可以变成“智能活体胶水”,这种胶水不仅有望实现海底输油管道的自动修复,在医药领域,这种“胶水”还能自发寻找出血位置并且封堵出血伤口 。
“材料合成生物学就是材料科学与合成生物学交叉碰撞的产物 。”钟超介绍,大量的材料合成生物学研究正在将天然生命体系的动态特征有效整合到传统材料中,使其能够实现自适应、自愈合和自增殖等特点 。
化学同样与合成生物学有着密不可分的关系 。
尼龙是生活中常见的材料,但传统的化学合成方式会产生大量的温室气体,消耗大量的水和能源 。如今,利用合成生物技术,能实现生物基尼龙的发酵合成,大大降低了能耗和污染 。据中科院天津工业生物技术研究所统计,和石化路线相比,目前生物制造产品平均节能减排30%~50%,未来潜力将达到50%~70% 。
“通过对生物大分子及其内部构造的研究,化学为设计、改造与合成生命提供了工具包,而合成生物的发展也将促进化学向着绿色、高效的方向发展 。”马迎飞说 。

推荐阅读