什么矩阵可以相似对角化

什么矩阵可以相似对角化
n阶矩阵要能对角化,要求能找到n个不相关的特征向量 。如果矩阵的n个特征值都不相同,那么一定能对角化 。(不同特征值对应的特征向量一定不相关)
可对角化矩阵是线性代数和矩阵论中重要的一类矩阵 。如果一个方块矩阵A相似于对角矩阵,也就是说,如果存在一个可逆矩阵P使得P(-1)AP是对角矩阵,则它就被称为可对角化的 。如果V是有限维度的向量空间,则线性映射T:V→V被称为可对角化的,如果存在V的一个基,T关于它可被表示为对角矩阵 。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程 。
可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理:它们的'特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂 。
若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和 。
可以相似对角化的矩阵一定是实对称矩阵吗不一定 。
【什么矩阵可以相似对角化】例如 没有重特征值的非对称矩阵可以对角化 。
即便有重特征值,只要有 n 个线性无关特征向量的非对称矩阵也可以对角化 。
什么矩阵可以对角化,它的r满足什么条件n阶方阵可进行对角化的充分必要条件是:n阶方阵存在n个线性无关的特征向量推论:如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵 。
如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重 复次数 。

什么矩阵可以相似对角化

文章插图
现在从矩阵对角化的过程中,来说说这个条件是怎么来的.在矩阵的特征问题中,特征向量有一个很好的性质,即Aa=λa.
假设一种特殊的情形,A有n个不同的特征值λi,即Aai=λi*ai.令矩阵P=[a1 a2 ... an]这样以来AP=A*[a1 a2 ... an]=[A*a1 A*a2 ... A*an]=[λ1*a1 λ2*a2 ... λn*an]=P*B,其中B是对角阵.B=λ1 0 0 ...0 λ2 0 ...... ... ... ...0 0 0 λn
由于不同特征值对应的特征向量是线性无关的,那么P是可逆矩阵,将上面等式换一种描述就是A=P*B*P-1 ,这也就是A相似与对角阵B定义了.
什么矩阵可以相似对角化

文章插图
在这个过程中,A要能对角化有两点很重要:P是怎么构成的?P由n个线性无关的向量组成,并且向量来自A的特征向量空间 。
如果A由n个不同的特征值,1个特征值-对应1个特征向量,那么就很容易找到n个线性无关的特征向量,让他们组成P 。
但是如果A有某个λ是个重根呢?比如λ=3,是个3重根.我们 知道对应的特征方程(3I-A)x=0不一定有3个线性无关的解.如果λ=3找不到3个线性无关的解,那么A就不能对角化了,这是因为能让A对角化的P矩阵不存在 。
如何判断一个矩阵是否可以相似对角化1°先看是不是实对称矩阵,如果是可以对角化,如果不是看第二步
2°算矩阵的特征值,如果特征值都不同,则可以对角化,若特征值有重根再看第三步
3°算有重根的特征值对应的特征多项式的秩,如果秩等于矩阵的阶数减去重数,也就是这个公式r(λiE-A)=n-ni,相等则可对角化,不等则可以判断该矩阵不能对角化
按上面三步一定可以判断出,也是做题最节约时间的步奏
什么条件下矩阵可以相似对角化n阶矩阵要能对角化,要求能找到n个不相关的特征向量 。
如果矩阵的n个特征值都不相同,那么一定能对角化 。(不同特征值对应的特征向量一定不相关)
如果矩阵存在多重特征值(可理解为几个相同的特征值) 。那么就要具体看这个r重的特征值能否找到r个无关的特征向量了?可以的话,仍可对角化,如果找不到,那么就不可对角化 。

推荐阅读