不一定的,因为函数的极值点可能在驻点和不可导点处取得,而函数是可导函数,且在定义域内的任何一点可导的话,那么函数的极值点就只可能在驻点取得,所以不是必为驻点,只是有可能 。
一、极值点的概述
若f(a)是函数f(x)的极值,则称a为函数f(x)取得极值时x轴对应的极值点 。
极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标 。
极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在) 。
可导函数f(x)的极值点必定是它的驻点 。但是反过来,函数的驻点却不一定是极值点,例如y=x^3,点(0,0)是它的驻点,却不是它的极值点 。
极值点上f(x)的导数为零或不存在,且函数的单调性必然变化 。
二、极值的充分条件
【可导函数的极值点一定是驻点吗】f在x0的某邻域上一阶可导,在x0处二阶可导,且f'(X0)=0,f"(x0)≠0
(1)若f"(x0)<0,则f在x0取得极大值
(2)若f"(x0)>0,则f在x0取得极小值
特别注意:
f'(x)无意义的点也要讨论 。即可先求出f'(x)=0的根和f'(x)无意义的点,这些点都称为可疑点,再用定义去判断 。例如:f(x)=▏x▏在x=0的导数是不可取的 。
推荐阅读
- 托福培训班一般收费都是多少钱
- 工地资料员证怎么报考
- 三支一扶是什么
- 普通话属于职业资格证书吗
- 统招专升本考试科目
- 适合低学历考的证书 这些证书含金量怎么样
- 志愿确认后还能修改吗 如何确认志愿填报成功
- 表达效果的答题格式模板
- 孕酮p正常值是多少