【频域卷积定理】卷积定理是傅立叶变换满足的一个重要性质 。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积 。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系 。
卷积定理的应用在很多涉及积分变换、积分方程的文章中都有所体现 。常见的一些重要的积分变换,例如:Mellin变换、Laplace变换、Fourier变换等都具有所谓的卷积性质(Convolution Property) 。这里要注意的是,针对不同的积分变换,卷积性质的形式不是完全相同的,只要一些基本的结构得到保留就可以了 。
卷积定理还可以简化卷积的运算量 。对于长度为 的序列,按照卷积的定义进行计算,需要做 组对位乘法,其计算复杂度为 ;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用 。
推荐阅读
- 例外和偏爱什么意思
- 宵和霄的区别是什么 宵与霄有什么区别
- 赵恒和刘娥有几个儿子
- 书是我的什么写句子
- 冰粉能不能放过夜 冰粉放一夜还能吃吗
- 唯乐智能运动手环怎么绑定手机
- 健康码不用了怎么删除
- 地铁司机属于什么编制
- 起泡胶粘到床单上怎么办 起泡胶粘到床单上怎么办不洗