根据相对论,接近光速飞行的宇宙飞船上 超大质量黑洞的第一宇宙速度可能等于光速

核心提示:本文参加百家号 #科学了不起# 系列征文赛 。宇宙中存在着大量的宇宙岛,我们能观测到的数量估计为2万亿个 。最近的河外宇宙岛离银河系只有几万光年,最远的河外宇宙岛位于上百亿光年之外 。在这些宇宙岛中,它们...
【根据相对论,接近光速飞行的宇宙飞船上 超大质量黑洞的第一宇宙速度可能等于光速】本文参加百家号 #科学了不起# 系列征文赛 。
宇宙中存在着大量的宇宙岛,我们能观测到的数量估计为2万亿个 。最近的河外宇宙岛离银河系只有几万光年,最远的河外宇宙岛位于上百亿光年之外 。在这些宇宙岛中,它们的光谱大都显示出红移,而且距离越远红移值越大 。这意味着河外宇宙岛都在远去,而且距离越远,远离速度越快 。
如果河外宇宙岛离银河系足够远,它们的退行速度甚至可以超过光速 。然而,爱因斯坦的相对论又指出,任何速度都不可能超过光速 。那么,宇宙岛的退行速度是怎么超光速的呢?为何这样的超光速又没有与相对论相违背呢?
狭义相对论:光速怎么不可超越?
相对论是大家喜欢谈论的一个话题,但这个理论很容易被误解 。宇宙中确实存一个终极速度,那就是真空光速c 。而且一旦物体有静止质量,光速都不可能达到,更不用说超光速,只有静止质量为零的东西才能以光速运动 。
需要注意的是,我们通常在谈论速度时,都是指物体相对于局域静止空间的速度 。但如果两个物体处于不同的空间坐标,在谈论速度时就需要注意一个关键的因素——时空本身的曲率和演化,这是广义相对论所讨论的范畴 。
狭义相对论的适用范围是静态且没有曲率的平坦空间,但在现实中,宇宙中充满了物质和能量 。在物质和能量存在的情况下,时空结构会随着随时间而变化,导致空间位置发生了变化 。
在诸如太阳这样的大质量天体周围,空间会被弯曲,处在这种弯曲空间中的物体就会加速靠近该大质量天体,从而表现出引力效应,这就是广义相对论对引力的解释 。即使物体没有相对于空间结构本身存在运动,它也会随着空间结构的变化而发生运动 。空间就像一条传送带,即便传送带上的物体是不动的,但运动的传送带会带着上面的物体一起运动 。
广义相对论:宇宙岛可以超光速退行
根据广义相对论,在一个各向同性且均匀的宇宙中,时空想要保持静态是不可能的,宇宙要么在坍缩,要么在膨胀 。但爱因斯坦一开始不允许这样的事情发生,他在这个理论中引入了宇宙学常数,以维持时空静态 。
在20世纪20年代,哈勃对宇宙岛的光谱做了详尽研究 。结果发现,宇宙中的宇宙岛并不是一半蓝移一半红移,而是几乎都在红移,只有银河系附近的少数宇宙岛出现蓝移,这表明宇宙岛基本上都在远离银河系 。
根据多普勒效应,光源在逐渐远离而去时,光的波长会变长,这会导致出现红移 。不过,宇宙岛的红移并非是狭义相对论的那种局域运动引起的,因为还有一个更主要的规律,这会让宇宙岛以超光速退行 。
哈勃定律
宇宙岛不仅大都在退行,而去退行速度(v)还会随着距离(D)的增加而线性增加,这个关系如今被称为哈勃定律,比例系数被称为哈勃常数(H0) 。
唯一能够解释哈勃定律的事实是空间自身正在膨胀 。如果把气球表面比作空间结构,气球上的点比作空间中的宇宙岛 。那么,当气球膨胀时,气球上的点就会随之被互相推开 。无论从哪个点看来,其他点都在退行,而且距离越远的点退行速度越快 。因此,只要距离足够远,宇宙岛之间的空间在单位时间内膨胀足够多,就会导致宇宙岛之间以超光速退行 。
空间膨胀速度有多快?
目前,哈勃常数的测量值大概为70千米/秒/百万秒差距 。百万秒差距是天文学上所使用的长度单位,1百万秒差距表示326万光年 。哈勃常数表明,如果两个宇宙岛的距离为326万光年,那么,空间膨胀会让它们以70千米/秒的速度互相远离,其他距离以此类推 。
照此来算,当两个宇宙岛的距离达到140亿光年之时,空间膨胀会让它们互相分开的速度达到光速 。如果距离超过140亿光年,宇宙岛的退行速度就会大于光速 。值得再次强调的是,这并不是宇宙岛在空间中真的以超光速运动,而是由空间结构的膨胀所引起的,这与相对论中的速度概念完全不是一回事 。
由于宇宙不断膨胀,我们所能观测到的最远宇宙岛GN-z11现在已经退行到了320亿光年之外,它目前的退行速度是光速的2.3倍,这是目前已知退行速度最快的宇宙岛 。它现在发出的光永远也无法抵达地球,所以我们不可能观测到现在的GN-z11 。
即便未来能够制造出非常先进的天文望远镜,观测到最为遥远的宇宙,但绝大多数宇宙岛都无法被我们观测到 。未来,我们只能观测到现在距离银河系不超过140亿光年的宇宙岛,因为它们目前发出的光经过足够长的时间之后,最后还能到达地球 。

    推荐阅读