因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数 。所以原先的假设不成立 。也就是说,素数有无穷多个 。
其他数学家给出了一些不同的证明 。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明 。
对于一定范围内的素数数目的计算
尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?” 。素数定理可以回答此问题 。
素数分布规律的发现,许多素数问题可以解决 。
在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数 。
存在任意长度的素数等差数列 。(格林和陶哲轩,2004年[1])
一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数 。(挪威数学家布朗,1920年)
一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界 。(瑞尼,1948年)
一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数 。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)
一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数 。简称为 (1 + 2)(中国陈景润)[2]
猜想
听语音
哥德巴赫猜想:是否每个大于2的偶数都可写成两个素数之和?
孪生素数猜想:孪生素数就是差为2的素数对,例如11和13 。是否存在无穷多的孪生素数?
斐波那契数列内是否存在无穷多的素数?
是否有无穷多个的梅森素数?
在n2与(n+1)2之间是否每隔n就有一个素数?
是否存在无穷个形式如X2+1素数?
黎曼猜想
孪生素数是无限多的证明
关键词:完全不等数,SN区间,LN区间.
一 。素数两性定理
大于3的素数只分布在6n-1和6n+1两数列中 。(n非0自然数,下同)
6n-1数列中的合数叫阴性合数,其中的素数叫阴性素数;6n+1数列中的合数叫阳性合数,其中的素数叫阳性素数 。
阴性合数定理
6[6NM+(M-N)]-1=(6N+1)(6M-1)(N M两个非0自然数,N=〈 M,下同)
6[6NM-(M-N)]-1=(6N-1)(6M+1)
在6n-1数列中只有这两种合数,余下就是阴性素数了,所以就有阴性素数定理
6NM+-(M-N)=/=x(阴性不等数)
6x-1=q(阴性素数)
阳性合数定理
6[6NM+(N+M)]+1=(6N+1)(6M+1)
6[6NM-(N+M)]+1=(6N-1)(6M-1)
在6n+1数列中只有这两种合数,余下就是阳性素数了,所以就有阳性素数定理
6NM+-(N+M)=/=X(阳性不等数)
6X+1=P(阳性素数)
二 。与孪生素数相对应的完全不等数
完全不等数(X),它既不等于阴性上下两式;也不等于阳性上下两式 。
(X)=/=6NM+-(M+-N)
则有6(X)+1=P 6(X)-1=q (p减1能被6整除的素数,q加1能被6整除的素数,下同)
一个完全不等数所产生的阴性素数q和阳性素数P就是一对孪生素数.
并且完全不等数与孪生素数是一一对应的.
三 。阴阳四种等数在自然数列中的分布概况
6NM+(M-N)=阴性上等数6NM-(M-N)=阴性下等数
6NM+(N+M)=阳性上等数6NM-(N+M)=阳性下等数
为了搞清它们在自然数中分布情况,把四式中的N叫级别因子数,M叫无限因子数 。
四种等数的每一个级别的最小等数都在6NN+-(N+N)范围 。
每一级别的上等数相邻两等数距离是6n+1,在自然数列中比例是1/(6n+1),两种上等数每个级别的比例合计是2/(6n+1),(但实际是略少于这个比例因每一级别的底部都没有这个级别的上等数;下等数也一样的情况 。)
推荐阅读
- 倩碧vc精华使用方法
- 圣诞日常妆怎么画 圣诞妆容怎么画
- 照母山梅花在哪个位置
- 迁户口后户籍怎么填
- 小家碧玉是多肉吗
- 途观水温表报警怎么回事
- 火象星座最大的爱情杀手都是哪些星座
- 创造美的能力之火象星座大排名
- 火象星座眼中的小幸运是什么样的