求矩阵特征值的方法
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系 。
矩阵特征值:设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是矩阵A的一个特征值(characteristicvalue)或本征值(eigenvalue) 。
性质:
n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根) 。
若λ是可逆阵A的`一个特征根,x为对应的特征向量,则1/λ是A的逆的一个特征根,x仍为对应的特征向量 。
若λ是方阵A的一个特征根,x为对应的特征向量,则λ的m次方是A的m次方的一个特征根,x仍为对应的特征向量 。
设λ1,λ2,…,λm是方阵A的互不相同的特征值 。xj是属于λi的特征向量(i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关 。
矩阵的特征值有哪些性质把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系 。求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则可求出属于特征值的全部特征向量 。
扩展资料
求特征向量:
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值) 。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量 。
判断矩阵可对角化的充要条件:
矩阵可对角化有两个充要条件:
1、矩阵有n个不同的特征向量;
2、特征向量重根的重数等于基础解系的个数 。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根) 。
若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0 。(一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的可逆矩阵P使P?1AP=Λ) 。
求矩阵特征值的方法如下:
任意一个矩阵A可以分解成如下两个矩阵表达的形式:
其中矩阵Q为正交矩阵,矩阵R为上三角矩阵,至于QR分解到底是怎么回事,矩阵Q和矩阵R是怎么得到的,你们还是看矩阵论吧,如果我把这些都介绍了,感觉这篇文章要写崩,或者你可以先认可我是正确的,然后往下看 。
由式(22)可知,A1和A2相似,相似矩阵具有相同的特征值,说明A1和A2的特征值相同,我们就可以通过求取A2的特征值来间接求取A1的特征值 。
矩阵特征值的方法求高斯点把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系 。扩展资料 矩阵特征值:设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是矩阵A的一个特征值(characteristic value)或本征值(eigenvalue) 。
性质:
n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根) 。
若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量 。
若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的'一个特征根,x仍为对应的特征向量 。
设λ1,λ2,…,λm是方阵A的互不相同的特征值 。xj是属于λi的特征向量(i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关 。
矩阵的特征值怎么算求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
推荐阅读
- 李世民最后为什么选李治,李世民登基杀了几个兄弟
- 华为手机怎么接打电话,华为手机乱拨打电话怎么办
- 古今内衣 调整型内衣
- 袯组词袯的组词袯字怎么组词
- 知识科普:亚马逊listing文案怎么写
- 抖音如何查看访客看过我,抖音怎么知道谁看过我作品
- 邓艾怎么死的历史,邓艾为什么谋反
- 家常菜之香辣土豆丝做法
- 藩台相当于现在什么官