导数,想必大家都不陌生了吧,常见的导数有sinx求导为cosx
x的平方求导为2x,e的x次方求导仍为e的x次方等等等等
这些都是求导所得到的结果
那么,大家有没有想过求导的意义究竟是什么,答案很简单,就是求极限
那么导数呢,就是这个函数的极限值了
当然,导数有这样一个性质,不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数,若某函数在某点上有导数,我们就说这个函数在这个点上可导,反之,就是不可导
那么如果我们知道一个函数可导,我们除了能够知道这个函数能够求得导数外,还能够得到什么呢,我们还能够得到函数在这个点连续,且左导数和右导数都存在且相等
注意:可导的函数一定连续,不连续的函数一定不可导
话不多说,我们直接来给出一道例题
图一
如题所示,设函数f(x)可导,它并没有说在哪个点可导,那就默认为所有点可导,那这个条件就放宽了,你可以通过举例子,总之,就是不用考虑那么多限制条件了
题目中还给出了一个条件就是f(x)f'(x)>0
这个条件告诉我们f(x)和它的导数的乘积大于零
看到这个式子,应该能够想到一点
f(x)f'(x)是由1/2f(x)^2得来的
图二
当然,我们也可以使用排除法
比方说设f(x)=e^x,那么可以满足f(x)f'(x)=e^2x>0这个条件
代入到式子中去,可以得到f(1)=e,f(-1)=1/e,显然B、D选项就可以知道是错误的
但是光这个例子可能具有特殊性,那我们再举一个例子
比方说设f(x)=e^-x,那么也可以满足f(x)f'(x)=e^2x>0这个条件
代入到式子中去,可以得到f(1)=-e,f(-1)=-1/e,显然A选项就是错误的
最后根据排除法,得到C选项是正确的
导数是函数值相对于自变量的瞬时变化率,求导数是一个取极限的过程 。对于一个连续且可导的函数,其导数的定义如下
函数可导的前提是函数必须连续,对于连续函数,有下列等式成立
上式是函数在x处连续的定义 。结合连续函数的定义和极限的运算性质,我们接下来推导导数运算法则 。
两个函数相加的导数假设F(x)为两个可导函数的和
那么根据导数定义,F(x)的导数为
即两个可导函数的和的导数等于导数的和,导数运算减法同理 。
两个函数乘积的导数假设G(x)为两个可导函数的和
根据导数定义,G(x)的导数为
两个可导函数的乘积的导数的结果为
两个函数的比值的导数假设H(x)为两个可导函数的比值
根据导数定义,那么H(x)的导数为
【可导的条件是什么?导数运算法则推导过程】两个可导函数的比值的导数结果为
掌握推导过程可以帮助理解导数的定义和运算 。
推荐阅读
- 裤子被染色了洗掉妙招 裤子被染色了洗掉妙招收是什么
- 水刺布无纺布是什么 水刺布与无纺布有什么区别
- 男生喜欢一个人的迹象,如何判断一个男生是否喜欢你?
- 广州最大的批发服装市场在哪里 广州最大的服装批发市场在哪
- 果树修剪技术 果树修剪要领,果树修剪技术运用中应注意哪些问题
- 三伏天脸为什么干燥 三伏天脸怎么会干燥
- 抖音发作品没有播放量怎么回事?怎么提高播放量?
- 河北阴历二月什么花开了,二月什么花开 二月有哪些花开
- 抖音创作服务平台在哪里打开?有什么功能?