y=xcosx是周期函数吗
y=xcsx不是周期函数 。对于函数y=(x),如果存在一个不为零的常数T , 使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数 。
证明:假设y=xcosx是周期函数,
因为周期函数有f(x+T)=f(x) ,
xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT,
所以cosT=1 , T=kπ/2 。
-xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0 ,
-xsinx*sinT-Tsinx*sinT=0 ,
【y=xcosx是周期函数吗】(x+T)sinx*sinT=0,
只能是sinT=0,T=kπ和T=kπ/2矛盾 ,
所以不是周期函数 。